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The calculation of the slowly converging lattice sums required in solid state physics has 
traditionally been rendered tractable by converting part of the sum into a sum over the 
reciprocal lattice. In this paper, the physical principles underlying that method have 
been used to justify a much simpler, yet equally effective approach which is well suited 
for numerical computation. The enhanced convergence rate, as compared with that of the 
so-called direct calculation, is illustrated by explicit computation in the case of a dipole 
sum. 

INTRODUCTION 

The problem of the numerical evaluation of lattice sums, i.e., functions of the 
coordinates of a lattice site summed over an entire crystal, occurs frequently in 
solid state physics. 

Although many of these sums converge slowly as lattice sites further and further 
from the origin are included, several techniques have been developed for improving 
the convergence. Due originally to Ewald [I], one method has been developed 
at length by Nijboer and de Wette [2], and later applications [3-51 have tended 
to concentrate on specific types of lattice sum. 

The increasing speed of electronic computers has now made it feasible to 
calculate many of these lattice sums directly, i.e., without the use of devices to 
enhance the convergence, even though execution time may be quite long. The 
essence of this method is that the contribution from all points lying within a 
radius R are calculated explicitly and the rest of the lattice is approximated by a 
continuum, i.e., a term is added which takes the form of an integral with limits R 
and infinity. The simplicity of this method is such that some workers [6] have 
elected to use it in preference to the more elaborate Ewald method. The purpose 
of this paper is to point out an acceptable compromise, hitherto overlooked, 
which combines the simplicity of direct computation with the enhanced convergence 
attainable by the use of the Ewald principle. Two examples of the use of this 
approach are given. 
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THEORY 

We now briefly reformulate the technique used by Nijboer and de Wette [2] 
for enhancing the convergence of the general lattice sum xi S(rJ where S is some 
function of the coordinates ri of a lattice site in a Bravais lattice. We write this 
sum in the form 

where F is some function, not yet specified. By means of a transformation, derived 
in detail in the original paper, the second term is written as a sum in Fourier space, 

C W = C Strd F(ri) + c G(k) 2 * Ti (2) 

where the ki are reciprocal lattice vectors and G(k) is the Fourier transform of 
S(r)[l - F(r)] and is given by 

G(k) = -&- j S(r)[l - F(r)] exp(-ik - r) dr (3) 

where V, is the volume of the unit cell. The procedure is then to find pairs of 
functions F and G which result in rapid convergence in both summations. The 
requirement that F and G be expressed in terms of standard functions in most 
cases leads to the employment of incomplete gamma functions to represent both 
F and G, and this is one of the complexities of the Ewald method that we seek 
to avoid. 

In the present context it is of interest to note that the integral in (3) is more 
readily evaluated1 in the case kj = 0 than for the higher-order Fourier components. 
The main assertion of this paper is that (2) can be made arbitrarily exact even 
when only this term is retained, i.e., that 

(4) 

becomes asymptotically exact as R - cc. 
The direct method of computation, mentioned in the introduction, is a special 

case of (4) in which F(r/R) is a step function, equal to unity for r < R and zero 
for r > R. The second term then represents the integration over the continuum. 

1 Clearly this does not apply when S(r) explicitly contains the factor exp(iq * r), where q is an 
arbitrary wavevector. Such sums are excluded from the argument which follows. 
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It now becomes clear why the direct method converges slowly as R is increased. 
For this case the function S(1 - F) has a sharp step at r = R and its Fourier 
transform in k space must necessarily have a long oscillatory tail. Thus the G&) 
for k, # 0 diminish only slowly as R increases. 

The compromise method mentioned in the introduction is to use (4) rather 
than (2) but to choose F in such a way that S(1 -F) is as smooth as possible 
in order to avoid having large Fourier components. We suggest also that F should 
be chosen for convenience of computation only, regardless of whether the general 
Fourier component (3) can be expressed in closed form. Instead we need only 
to be able to evaluate the zero-order component, for which the expression is 
simpler. A convenient class of convergence functions are the RVL(r), defined by 

F,(r) = exp[--a(r/R)m] (5) 

where we elect to include in the summation only those points for which ri < R 
and make this approximation arbitrarily good by making LY large enough. Since 
(1 - F) behaves like rm near the origin, we can choose m large enough to overcome 
rapidly varying behavior on the part of S there so that S(1 - F) will be smooth. 
The conjecture is then that the Fourier transform of S(1 - F) will, for sufficiently 
large values of R, be negligible outside the first Brillouin zone in k space so that (4) 
will be a good approximation. The optimum value of m is to be determined by 
trial and error. Note that as m + cc the convergence function (5) tends to the 
step function discussed earlier and hence that the direct or simple continuum 
calculation could be performed by using (4) in this limit. 

In order to compare the convergence rates for the direct method and for the 
convergence function (5) it is necessary to perform an “experiment,” i.e., to 
actually compute the lattice sum using (4) for various values of R in both cases. 
In order to demonstrate that the method suggested in this paper has considerable 
power, the lattice sum used in the first example is chosen to be one of the most 
slowly convergent of all sums occurring in solid state physics. 

EXAMPLE 1 

For the first example we consider the sum required to calculate the field due 
to a lattice of dipoles. This sum is of sufficient importance that papers [3,4] have 
been devoted exclusively to it. If we choose the z axis parallel to the dipoles the 
sum can be written 

T S(r,) = ; (3 co9 8, - l)/ri3 
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in spherical coordinates. Since this sum is shape-dependent the value obtained 
by the use of (4) will be that for a sphere. The continuum contribution in this case 
vanishes identically for any spherical shell and so need not be considered in 
either the direct calculation or in the application of (4). 

The sum was computed for a lattice of cerium ions in cerium magnesium nitrate 
(CMN) because the program was already set up in connection with a previously 
published investigation [g]. The CMN lattice has trigonal primitive lattice vectors 
but is sometimes characterized by a hexagonal unit cell [6] with parameters 
c = 17.22 A and a = 10.92 A. Using the latter dimension as the unit of length, 
the value of the sum (omitting the term ri = 0) was determined to be 1.379314207 
by the method of the approximation (4) using a convergence function 
exp(-20(r/R)5) with R/a = 8. In order to investigate the way in which this limiting 
value was approached as a function of R, the sum 

Y(R) = c exp[-20(ri/R)6](3 cos2 Bi - l)/ri 
Vi-CR 

(7) 

was computed for a large number of values of R and the error 

E(R) = Y(R) - Y(a) (8) 

was determined using the limiting value already quoted as a reasonable approxima- 
tion for Y(co). In order to reduce the effect of oscillations in the sign of E(R) 
and to exhibit a consistent functional relationship, E(R) was replaced by E(R), 
a root-mean-square error taken over several values of the error in the neighborhood 
of R. This quantity, and the corresponding quantity using the direct method 
(i.e., with a step function), is plotted as a function of R in Fig. 1. In addition, 
the number of points involved in the computation, which varies as R3, is shown. 
One can immediately see from this chart that to obtain the lattice sum within 
0.1 %, which is an accuracy comparable to that with which the lattice constants 
are known, the number of lattice points needed in the computation is about 
300 using the convergence function, whereas it is about 3 x lo5 using the direct 
method-a thousandfold improvement. If higher accuracy were required, the 
relative improvement would be even greater. 

This improvement in convergence, effected by partitioning the lattice into a 
discrete part and a continuum with a smooth function rather than a step function 
at I = R, is much greater than is intuitively obvious. It is, moreover, achieved 
without any increase in complexity. The computer program for the evaluation 
of (4) is essentially the same as for a direct computation. Even if a faster conver- 
gence rate could be obtained by using the planewise summation method of 
de Wette and Schacher [4], which is also based on the Ewald method, it would seem 
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FIG. 1. A comparison of the rates of convergence of a dipole sum (CMN) with and without 
convergence factor. The unit of radius is the lattice constant a. 

to be scarcely worthwhile, because the computer time required to sum over the 
300 points required by the present method is almost negligible. 

The extension of this method to lattice sums containing several sublattices of 
different orientation is straightforward, because the contributions from each 
sublattice are additive. 

EXAMPLE 2 

As a second example we consider the lattice sums Ci (l/ri”) which converge 
for all IZ > 3. Using the convergence functions (5) we can write (4) in the form; 

1 47r 
C (l/rin) -C (l/rim) exp[--ol(rJR)“] 4 - ___ - 

ct("-3)lm r 1 _ (n - 3) . 
in z % Vc (n - 3) R(n-s) I 

(9) 
The integral over the continuum is expressed in terms of the standard gamma 
function. 
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Note that in the limit m + co this becomes 

and that (9) and (10) are the two expressions whose convergence we wish to 
compare. For the most slowly convergent of this type of sum, namely n = 4, 
for the CMN lattice, it was found that 600 lattice points sufficed to give conver- 
gence within 0.1% using (10) whereas the same number of points gave convergence 
within 0.001% using (9) with m = 6. The relative improvement obtained by 
using the convergence function is not as striking as in example 1 but is nevertheless 
quite large. 

It is worth pointing out that this example is of sufficient generality to be directly 
applicable to all absolutely convergent multipole lattice sums. Such sums contain 
a factor in the summand which varies with angle, but this merely results in some 
factor other than 4~r in the integration over solid angle. 

CONCLUSION 

The method suggested in this paper effects a simplification over the Ewald 
method in that only one term of the reciprocal space summation is included. 
At the same time, as the examples show, the convergence rates achieved thereby 
are entirely satisfactory, and much better than the direct calculation in which 
points outside a certain sphere are replaced by a continuum. On the other hand, 
the actual calculation could hardly be more straightforward to carry out. 

The principal exception, for which the method is not suited, is the class of 
lattice wave sums, where the summand S(r) explicitly contains the factor exp(iq * r). 
This case is best treated by the methods given in Refs. [3-51. With this exception, 
however, the method given in this paper would appear to be quite useful, especially 
for dipole and higher-order multipole sums, and does not require modification 
from one crystal structure to the next. 
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